Simulation Based Optimization of a Cold Heading Process to Extend Die Life, using Simufact.forming

A.J. Buijk Simufact-Americas LLC (arjaan.buijk@simufact-americas.com)

C. Schultz Vico Products (cschultz@vico.com)

Keywords: Cold Heading, Die Life, Finite Element, Simufact.forming.

ABSTRACT

Using simulation, a 6 station cold heading process was optimized to increase die life.

INTRODUCTION

In this paper we will demonstrate how simulation was used to improve die life of the 6th station in a coldheading process, for the part shown in figure 1.

Figure 1: Cold Headed Part

The optimized process resulted in a 10x longer die life, significantly improving profitability.

THE BASE LINE PROCESS

The progression sequence for the baseline process is given in figure 2.

The typical die failure is shown in figure 3.

Figure 2: Baseline Progression Sequence

THE SIMULATION SETUP

The cold header is defined as a crank press, with following characteristics: RE۱

- Crank Radius (R) = 100 mm
- Rod Length (L)
- Revolution (REV)

The material of the part is AISI 1035, which is available in the Simufact.forming material database. Details of the material data is given in Figure 4.

= 80 RPM

DB.AISI_1035(T=20-300C)			
Bastic Plastic Damage P	Plot History		
- Basic Material Constants			
Young's Modulus	199948000000	Pascal	-
Poisson's Ratio	0.29	_	
Density	7833.4	kg/m3	-
Denaty	J	, -	
Heat Material Constants			
Thermal Conductivity	46.729	Watt/(m*K)	~
Specific heat capacity	419	Joule/(kg*K)	~
			Cancel
DB.AISI_1035(T=20-300C) Bastic Plastic Damage F Yield Stress [Pa E+1 9.018	Plot History 8]	20 300	Cancel
DB.AISI_1035(T=20-300C) Bastic Plastic Damage F Yield Stress (Pa E+4 9.018	Plot History 8]	20 300 4.00 min. :	Cancel
DB.AISI_1035(T=20-300C) Bastic Plastic Damage F Yield Stress [Pa E+1 9.018	Plot History 8]	20 0 300 4.00 min. j 1.000	Cancel
DB.AISI_1035(T=20-300C) Bastic Plastic Damage F Yield Stress [Pa E+1 9.018	Plot History 8]	201 300 4.00 min. ; 1.000	Cancel

Figure 4: Material Data for AISI 1035

Lubrication was modeled using a Plastic Shear Friction of 0.12.

SIMULATION RESULTS - BASE LINE PROCESS

The simulated progression sequence for the baseline process is given in figure 5, and the required forces for each station in figure 6.

Figure 5: Baseline Progression Sequence – Simulated

Figure 6: Baseline Forces - Simulated

As can be seen, the simulated shapes are identical to the actual part progressions. A close investigation showed that all details, including small under-fills in corners were correctly predicted. This gave high confidence that the model definition was correct, and formed a good basis for the optimization step.

THE OPTIMIZED PROCESS

Figure 6 of the baseline process, shows that the force needed in station 6 was excessively high, and about 3x higher than the force needed in station 5. The objective of the re-design was to perform more deformation work during station 5, and off load station 6. Only station 5 was modified.

The original and redesigned station 5 shapes are given in figure 7, and the forces in figure 8.

Figure 7: Baseline & Optimized Station 5

CONCLUSION

Using the Simufact.forming simulation program, an existing cold heading process was successfully optimized.

From the force curves in figure 8, it is clear that a better force balance was achieved between station 5 and station 6, and most importantly, the required force for the last station was reduced significantly.

The result of this change was that the die life in station 6 was increased by a factor 10.

An additional benefit of the new design for station 5 was the creation of a better gripping surface for transfer between the stations.

CONTACT INFORMATION

For further details about this work, the authors can be contacted at the following e-mail address:

Arjaan Buijk: arjaan.buijk@simufact-americas.com Curt Schultz: cschultz@vico.com

